Physiology of Root-Associated Nitrogenase Activity in Oryza sativa.

نویسندگان

  • P van Berkum
  • C Sloger
چکیده

An intact method for measuring immediately linear rates of acetylene reduction was used to investigate the relationship between temperature, pH, O(2) concentration, and light intensity with the rate of root-associated nitrogenase activity in rice (Oryza sativa L.). Nitrogenase activity varied over a temperature range of 10 to 50 degrees C and optimal rates of acetylene reduction were recorded at 35 degrees C. Nitrogenase activity was also influenced by the pH of the liquid surrounding the roots prior to assay. Maximal rates of acetylene reduction were recorded over a pH range from 5.8 to 7.5. Nitrogenase activity was significantly reduced by concentrations of O(2) 0.5% (v/v) or more when the intact plant assay method was used, and no optimum was detected. However, when the plant tops were removed and the cut ends sealed from the atmosphere for 4 hours, acetylene reduction rates were maximal at 0.25% O(2) (v/v). When plants were moved from sunlight (1,400 microeinsteins per square meter per second) to shade (9.6) root-associated nitrogenase activity at 35 degrees C significantly decreased 15 min later to one-fourth the rate and recovered upon return to sunlight. When the light intensity reaching the leaf canopy was progressively reduced from 1,050 to 54 microeinsteins per square meter per second the rate of root-associated nitrogenase activity decreased from 550 +/- 135 to 192 +/- 55 nanomoles ethylene per gram dry root per hour. The study suggests that the rate of root-associated nitrogenase activity in rice at constant temperature may well be mediated by variations in the concentration of O(2) resulting from changes in the rate of photosynthesis as well as variations in the rate of transport of photosynthate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Combined Nitrogen with the Expression of Root-Associated Nitrogenase Activity in Grasses and with the Development of N(2) Fixation in Soybean (Glycine max L. Merr.).

Soluble root N concentrations of corn, sorghum, pearl millet, rice, wild rice, and soybeans were determined and related to measurements of nitrogenase activity and changes in availability of combined N to plants. In corn, sorghum, and pearl millet, applications of fertilizer N increased soluble root N concentrations, but root-associated nitrogenase activity was negligible in control and treated...

متن کامل

Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules.

Sinorhizobium meliloti cells were engineered to overexpress Anabaena variabilis flavodoxin, a protein that is involved in the response to oxidative stress. Nodule natural senescence was characterized in alfalfa (Medicago sativa) plants nodulated by the flavodoxin-overexpressing rhizobia or the corresponding control bacteria. The decline of nitrogenase activity and the nodule structural and ultr...

متن کامل

Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis.

Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precu...

متن کامل

Effect of Endophytic Fungus, Piriformospora Indica, on Growth and Activity of Antioxidant Enzymes of Rice (Oryza Sativa L.) Under Salinity Stress

Abiotic stresses including salinity are the major limiting factors of growth and crop production worldwide. Microbial endophytes as the most important soil microorganisms, by modifying plants at genetical, physiological and ecological levels increase their yield per area unit and provide the possibility of crop production in saline and arid soils or climates with biotic and abiotic stresses. Th...

متن کامل

Effect of Endophytic Fungus, Piriformospora Indica, on Growth and Activity of Antioxidant Enzymes of Rice (Oryza Sativa L.) Under Salinity Stress

Abiotic stresses including salinity are the major limiting factors of growth and crop production worldwide. Microbial endophytes as the most important soil microorganisms, by modifying plants at genetical, physiological and ecological levels increase their yield per area unit and provide the possibility of crop production in saline and arid soils or climates with biotic and abiotic stresses. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 69 5  شماره 

صفحات  -

تاریخ انتشار 1982